In-situ measurement of water vapor isotopic composition near the tropopause:

first results from the Harvard ICOS Isotope Instrument

Keutsch, F.N., Moyer, E.J., Sayres, D.S., Allen, N.T. Anderson, J.G.

Water Isotopologues: Motivation

- Study of dehydration mechanisms (response to forcing)
- Priority 1 measurement for upcoming science missions
- Development need has been identified
 - Instrument for vapor phase is needed
 - Science requirements demand improved sensitivity
- Direct absorption:
 - simultaneous measurement of H₂O, HDO, H₂¹⁸O
- Substantial pathlength enhancement:
 - Integrated Cavity Output Spectroscopy (ICOS): > 4km pathlength

Integrated Cavity Output Spectroscopy (ICOS)

- New program funded by NASA (part of the Instrument Incubator Program)
- Steady State cw transmission monitored
- Ideal for measuring multiple species
- Substantial pathlength enhancement: 4200 m

¹Paul et al. Appl. Opt. 40, 4904 (2001); Baer et al. Appl. Phys. B 75, 261 (2002).

ICOS sensitivity in comparison:

- Sensitivity in stratosphere: 55 ppt in 3s for HDO
- Observation of small changes in δD on a short timescale
- Improved analysis of fit artifacts

Harvard ICOS instrument

Harvard ICOS instrument

Robustness

- Few movable parts; easy alignment
- Novel cavity design
 - Stable passive cavity; fixed mirrors

Contamination

- Sampling system:
 - Coated, electropolished
 - Minimal dead volumes

¹Moyer, E.J., Sayres, D.S., Keutsch F.N. et al. in preparation (2005).

Harvard ICOS instrument: flight January 08, 2005

- 4 test flights
- Performance as in laboratory
- No evaporation of ice observed
- Fast time response

Harvard ICOS instrument: flight January 08, 2005

Isotope ratio clearly provides needed tracer

Harvard ICOS instrument: flight January 08, 2005

Sensitivity allows fast measurements

Isotopic fractionation: Preliminary results

- General profile resembles ATMOS, FIRS-2, Hoxotope data
- Variability at tropopause reflects atmospheric variability
- Analysis of variability

 dehydration, transport mechanisms

¹Moyer *et al.* Geophys. Res. Lett. **23**, 2385 (1996); Kuang *et al.* Geophys. Res. Lett. 30 Art. No. 1372 (2003), Webster, C.R. *et al.* Science **302**, 1742 (2003).

Conclusions

- Most sensitive airborne IR spectrometer
- Intercomparison with other instruments:
 - Fast time response
 - No evaporation of condensed phase
- Upgrades in progress:
 - Sealed cell
 - Pressure regulation system
- Water isotopologue (gas + condensed phase) measurements allow study of, e.g.:
 - Dehydration, transport, cloud microphysics and response to forcing
- Harvard ICOS instrument ready and available for Aura validation missions